An Attackers Guide to Hiding Your Back-end APIs

Mathias Gam-Pedersen
ReTest Security

Copenhagen, Denmark
mgp @retest.dk

Abstract—When it is possible for an attacker to obtain a
lot of detailed information about a web application, it speeds
up the time needed to find any potential vulnerabilities in
said application. In this paper, we discuss how you can "hide”
information about your back-end application through various
methods, to hinder an attacker to be able to gather useful
information through reconnaissance and to reduce your publicly
accessible attack surface. The methods described are proxying,
having the front-end fetch information and proxy requests, and
using serverless functions to pass requests to the back-end. We,
furthermore, discuss some of the security implications of opting
for one of these solutions, along with added security measures
that could further increase the security of the back-end APIs.

Index Terms—Attack Surface Reduction, Security Engineer-
ing, IT Reconnaissance

I. INTRODUCTION

If it is possible to obtain a lot of information about a system
through reconnaissance, it makes the job of attacking said
system easier. In this paper, we will discuss approaches that
can be used to reduce the amount of information possible
to obtain from a back-end. Furthermore, we will cover the
motivation and security considerations related to using these
approaches.

II. BACKGROUND

In this section, we will provide a high-level background
to the primary concepts of this paper. First, we will cover
one of the common architectural patterns of smaller web
applications. Next, we will give a brief introduction to attacker
methodologies, focusing on the initial stages. Finally, we will
briefly discuss how the back-end could be isolated.

A. Common Web Application Design Pattern

In this section we will provide a brief introduction to
the Model/View/Controller (MVC) design pattern [1], used
for many smaller web applications. In Figure 1 we have
visualized the flow requests follow through a typical MVC
application and the user.

Most applications store and handle data, which we
refer to as the model. Often data is stored in a database. To
provide the functionality to perform create, read, update, and
delete CRUD operations on the model, and various other
functionality, most applications have a back-end application,
which we refer to as the controller. To present the user with a
visual view of the data, most applications contain a front-end
graphical application, referred to as the view.

For this paper, we only consider web-based MVC
applications. Therefore, we define a controller to be a back-
end API and a view to being a front-end web application.

S ——

Model
(Database)

g

Controller
(Back-end AP}

]

(Front-end)

Fig. 1. Visualization of the Model/View/Controller (MVC) design pattern.

B. Attacker Methodologies

Most attacker methodologies and generalized approaches,
such as MITRE ATT&CK® [2], the Cyber Kill Chain® [3],
and OWASP Web Security Testing Guide (WSTG) [4], follow
the same generalized approach: Perform reconnaissance
to gather information about the target system, discover
vulnerabilities, exploit a vulnerability, and finally using the
vulnerable system in an unintended manner.

The earlier system owners can stop or slow down
the progress of an attacker, the better. If it is not possible
to perform detailed reconnaissance of a system, then the
task of attacking a system typically becomes much more
time-consuming. The reason is that if an attacker does not
know which technologies are used for a given system, it
would be required to test for potential vulnerabilities specific
to most common technologies and programming languages.
This would mean that an attacker has to send a larger amount
of requests to the systems with various payloads, increasing
the chance of the various detection systems noticing that the
system is being attacked. Instead, if it would be possible
to determine the exact technology used for a given service,
it narrows down the potential attacks, thereby reducing the
number of payloads needed to test and the time investment.



C. Isolation of Your Back-end APIs

We define isolation of the back-end APIs as when it is not
possible to interact directly with them. Instead, only a few
systems can communicate with the APIs. The most secure
approach to achieving this would be via network isolation,
where no unauthorized entity can interact with the back-end
service(s). Following this approach, it would not be possible
to interact directly with any back-end service.

In some scenarios, isolation via network isolation might
not be possible or feasible. For such situations, a simple
approach is to require an API key for all API endpoints in
the back-end, which is only known to the authorized services.
Although this does not remove the opportunity to interact
directly with the system, it removes the option of being able
to directly access any functionality of the system.

ITII. HIDING YOUR BACK-END APIS

In this section, we will discuss three different approaches,
which could be utilized to provide front-end user access to an
isolated back-end, without disclosing any information about
the core back-end application(s). Before discussing the various
approaches we will first cover the motivation behind choosing
to use one of the approaches.

A. Motivation

The primary motivation for hiding back-end APIs is to
reduce the attack surface of an application. By limiting the
number of services that are publicly available you reduce
the chance of any one system being compromised by a
potential zero-day exploit. Furthermore, it allows companies
with limited time available for maintaining security a way
of prioritizing which systems are most important to keep
updated and secure.

In addition to attack surface reduction, hiding information
about back-end APIs greatly reduces the amount of
information that is possible for an attacker to obtain through
reconnaissance. The consequence of this is that the attacker
has to spend more time to find any potential vulnerabilities
in the back-end, and would have to attempt many different
exploits which would not work on the technology a given
back-end is using. If isolation is coupled with the detection of
malicious activity, this would likely help increase the chance
of malicious activity being detected.

B. Approach A: Proxy

One approach to hiding APIs is through the use of a proxy,
which removes any information from the headers which is
not strictly needed. All requests between the front-end and
back-end would go through this proxy.

Following this approach, the back-end functionality
would still be accessible in the same capacity as it would be
if exposed directly to the internet. The main benefit is the
reduction of information available, and it may make it easier

to implement other security checks in connection with the
Proxy.

C. Approach B: Server-side Fetching

Using this approach the application would only have the
front-end server publicly available. Whenever the application
needs to fetch data from the back-end, the front-end server
performs this action before sending the website data to the
user. For the functionality that the user needs to trigger,
which does not involve requesting a new web resource, the
front-end server would implement simple API endpoints that
pass the request to the back-end server.

By utilizing this approach it may be possible to limit
access for some endpoints in such a manner that the users
will not be able to provide any input which might lead to
vulnerabilities. If the API in the front-end only sends back
limited information about the status of the request to the
back-end, it would remove the ability for an attacker to
use error messages to gather useful information about the
back-end.

D. Approach C: Serverless Functions as a ”Proxy”

Another approach is to make use of serverless technology to
have all requests to a back-end go through serverless functions,
which then send the request to the back-end. The benefit of
this approach is that a potential bottleneck is removed in terms
of the number of active users the system used to hide the
back-end can handle, as long as the serverless functions are
permitted to scale enough to meet the demand. Furthermore,
since the functions are short-lived and single-request there is
no ability to interfere or read other requests, removing the
ability to man-in-the-middle upon a compromise of the "hiding
mechanism”.

IV. SECURITY CONSIDERATIONS

In this section, we will cover some of the security
considerations which need to be considered before choosing
to hide your back-end APIs. Furthermore, we will provide
suggestions on how the security could be further improved,
if You choose to hide Your back-end APIs.

An important thing to consider related to the various
approaches is related to what the impact would be of a total
compromise of the “hiding mechanism”. If it is possible
to compromise the system(s) running approach A and B,
it would likely lead to the ability to see all traffic flowing
through the system. Furthermore, it would allow for an
attacker to perform man-in-the-middle attacks, where traffic is
manipulated in transit to achieve malicious actions. However,
the impact of a full compromise of the said system has to be
weighed against the impact of a full compromise of a back-
end server. Typically these servers contain credentials to be
able to gain full access to databases and other critical services,
which could prove more critical to have compromised than
the impact of a man-in-the-middle attack.



A. Further Improving Security

To further improve the security of the web application,
we would recommend implementing rudimentary input
validation and input cleaning into the “hiding mechanism”.
Implementing this would help remove most malicious input
before the input being handled by the back-end.

The impact of a compromise of the “hiding mechanism”
can be greatly reduced by limiting the mechanisms’ ability to
manipulate data. This can be achieved by sending the data as a
signed JSON Web Token JWT, which would provide integrity
to the request through the mechanism. If confidentiality is
important, JSON Web Encryption (JWE) could be used to
send the data in an encrypted manner through the mechanism.

To further increase security it would be recommended
to include various other security services as a part of the
chosen “hiding mechanism”. One of the highest impact
mechanisms is to use a trusted web application firewall
(WAF), which would analyze all traffic to spot and block any
request which is deemed to be malicious. Adding logging
mechanisms would also help to be able to analyze the traffic
of the applications, which can be useful in finding bugs or a
potential incidence response scenario.

V. CONCLUSION

By adding a "hiding mechanism” between the front-end
and back-end of a web application the system owners will
be able to greatly reduce the amount of information that
is possible to obtain about the front-end. Furthermore, by
opting to use a “hiding mechanism” it might be possible
to limit access to some API endpoints, which reduces the
available attack surface of the application. Combined this
would require an attacker to invest more time into attempting
to find vulnerabilities in the application, along with increasing
the number of malicious requests said the attacker has to send,
increasing the chance of attacks being detected.

REFERENCES

[1] Reenskaug, Trygve Mikjel H. ”The original MVC reports.” (1979).

[2] Strom, Blake E., et al. "MITRE ATT&CK®: Design and Philosophy.”
(2020).

[3] Hutchins, Eric M., Michael J. Cloppert, and Rohan M. Amin.
“Intelligence-driven computer network defense informed by analysis
of adversary campaigns and intrusion kill chains.” Leading Issues in
Information Warfare & Security Research 1.1 (2011)

[4] Saad, Eric, et al. "OWASP Web Security Testing Guide” (2022)



